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ABSTRACT

Molecular dynamics simulations are used to study the properties of water modelled by

the CF1 potential. The majority of the simulations are undertaken in the isothermal-

isobaric ensemble. A short review of constant pressure and temperature molecular

dynamics techniques is presented with particular reference to their application to the

CF1 model of water. The shifted force CF1 model of water is studied. By shifting the

force and potential curves in such a way as to remove the long-range Coulomb tail, it is

possible to form short-range potentials which capture a few features of the actual CF1

potentials.
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INTRODUCTION

Molecular dynamics is a common computational technique. In this paper we discuss

certain aspects of molecular dynamics as it relates to our research interests on solvation

effects in CF1 water. In the next section we present a short review of constant pressure

molecular dynamics algorithms which allow us to compare our simulation results to

experiment with greater ease. The remaining sections show the application of a shifted

force technique which allows rapid equilibration of the simulation box by generating a

set of short range CF1 potentials.

CONSTANT PRESSURE MD SIMULATIONS

This section summarises the various methods which exist in the literature for performing

simulations in which the pressure is kept constant. All discussion is related to systems

of atomic nature, however they can be readily generalised to molecular systems.

The Andersen Extended System Method

The first simulations involving constant pressure were performed by Andersen[1]. In a

constant pressure simulation the volume of the system will fluctuate while the pressure

remains constant. These fluctuations are introduced into the system by treating the

volume as an additional dynamical variable. The system then remains at constant

pressure by expanding or contracting isotropically.

The particle’s position, ri, is replaced by a scaled co-ordinate, si, which is defined
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as

si = ri/V
1
3 . (1)

The Lagrangian for the system is then simply the kinetic energies of the particles and

the piston minus the potentials due to the particle interactions, φ, and the external

pressure and is given by

L =
1

2
mV

2
3

N∑
i=1

ṡi · ṡi −
∑
i<j

φ(
1

3
V sij) +

1

2
MV̇ 2 − P0V , (2)

where V is the volume, P0 is the external pressure, m is the particle mass, sij = si− sj

and M is the mass of the piston keeping the pressure constant. The equations of motion

generated by this Lagrangian are then given by

dri

dt
=
pi

m
+

1

3
ri
d(lnV )

dt
, (3)

dpi

dt
= −

∑
j 6=i

r̂ijφ
′(rij)−

1

3
pi
d(lnV )

dt
and (4)

M
d2V

dt2
= −P0 +

1

V
(
2

3

∑
i

pi · pi
2m

−
1

3

∑
i<j

rijφ
′(rij)) , (5)

where pi is the particle momentum and rij = ri − rj. In the limit that the mass of the

piston becomes infinite these equations reduce to the microcanonical case above. Other

than this restraint the mass of the piston has no effect on the averages that are calculated

from the trajectories. These equations produce trajectories in the isoenthalpic-isobaric

ensemble. By combining this method with the constant temperature method explained

in the same paper it is possible to generate trajectories in the NPT ensemble.

Parrinello and Rahman[2] generalised the method of Andersen to take into account

full flexibility of the MD cell. In their method the edges of the cell are formed by

three (variable) vectors ~a,~b and ~c which are defined in a fixed reference co-ordinate

3



system. The volume of the cell is then given by taking the determinant of the matrix

h
¯

= (~a~b~c). The position of a particle i is given by ri = ξi~a + ηi~b + ζi~c = h
¯
si where si

is a column vector given by (ξi, ηi, ζi)t where the superscript t denotes the transpose.

The Lagrangian for the system is given by

L =
1

2

∑
i

ṡi
tG
¯
ṡi −

∑
i

∑
j>i

φ(rij) +
1

2
MTr(ḣ

¯
tḣ
¯
)− P0V , (6)

where G
¯

= h
¯
th
¯
. This Lagrangian can then be used to generate the equations of motion

for this system which when solved generate trajectories which sample the NPH ensemble

[3].

The Constraint Method

Another major class of constant pressure algorithms is known as the constraint meth-

ods[4]. In these methods, modified equations of motion are used which generate tra-

jectories in which the instantaneous pressure is a constant of the motion as opposed to

the Andersen method where the system takes time to respond to the changes in the

pressure resulting in pressure fluctuations.

Evans and Moriss[5] showed that the trajectories in the NPT ensemble of Andersen

are not smooth. They suggested the constraint method in an attempt to counter this,

to keep the pressure exactly constant and to remove the “unknown” parameters that

are part of that system.

The method uses a Hamiltonian defined by

H = H0 + ε̇
∑
i

ri · pi , (7)
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where H0 is the constant NVE Hamiltonian. Solving Hamilton’s equations (and includ-

ing the constant temperature formalism) gives the equations of motion

ṙi =
pi

m
+ ε̇ri and (8)

ṗi = Fi − ε̇pi − αpi . (9)

where Fi is the force on particle i, α is the temperature damping coefficient and ε̇ is

the dilation rate of the system which is defined by the equation

V̇ = 3V ε̇ . (10)

These equations generate trajectories in the isothermal-isobaric ensemble.

The Berendsen Method

The constraint method has disadvantages which were highlighted Berendsen[6]. An

unstabilized drift in the pressure or temperature can occur, as the reference temperature

and pressure do not appear in the formalism. Also the Hamiltonian is unphysical,

although the method is consistent with Gauss’ Principle of Least Constraint. Berendsen

goes on to describe another method for constant pressure simulation. In this method,

an extra term is added to the equations of motion to change the pressure

dP

dt
=
P0 − P

τP
, (11)

where P0 is the desired pressure of the system and τP is a time constant for the pressure.

This results in the volume of the box being scaled by a factor of χ and the centre-of-mass

coordinates of each molecule by χ
1
3 where

χ = 1−
β∆t

3τP
(P0 − P ) , (12)
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and β is the isothermal compressibility.

Refining The Constant Pressure Methods

Over subsequent years the method of Anderson and Nosé was refined and developed by

Hoover[7], Wentzcovitch[8], Lill and Broughton[9] and Melchionna, Ciccotti and Holian

[10] who dealt with technical aspects such as modular invariance, multiple thermostats

etc. The most recent formulation of the extended system method is given by Martyna,

Tobias and Klein[11] who claimed that there were still inconsistencies in the formulation

of the equations of motion for constant pressure MD. In particular they claimed the

various formalisms do not generate trajectories from a true isothermal-isobaric ensem-

ble. Melchionna et al [12] responded to the Martyna et al paper to show that although

the criticisms were valid for earlier formulations of the extended system method, their

formulation does generate a true constant NPT ensemble.

Recently there have been further developments. Bernasconi[13] combined Carr-Par-

rinello molecular dynamics with the Parrinello-Rahman method for changing cell shape

to generate ab initio constant pressure molecular dynamics. Feller et al[14] proposed an

new method called the Langevin Piston method which overcomes certain shortcomings

of the Andersen and Berendsen methods by adding an extra Langevin term to the

Andersen equations. Finally Melchionna and Ciccotti[15] have developed a method

for molecular systems which scales the atomic co-ordinates rather than the molecular

centre of mass.

Each method has its own advantages and disadvantages. The extended system

6



methods produce well-defined trajectories but experience undesirable oscillations in

the pressure. The constraint methods remove the oscillations but at the expense of

utilizing an unphysical Hamiltonian and having a potentially unstabilized drift in the

pressure. Finally the Berendsen method while overcoming the above disadvantages

produces trajectories in an undefined ensemble. The best method appears to be that

described by Martyna et al[11] or equivalently the method of Melchionna et al[10]

which appear to have consolidated the best of the various methods and reformulated

the equations to remove some of the more technical inconsistencies.

APPLICATION TO CF1 MODEL OF WATER

This work simulates the interaction between 108 water molecules which interact as

defined by the CF1 potential of water. These potentials were originally derived by

Stillinger and Rahman [16] and were later modified by Duh and Haymet[17]. The CF1

potentials have two distinct parts – a Coulomb term which falls off as the inverse power

of distance and various short range terms which fall off rapidly to zero.

In a simulation the long range forces are calculated using the Ewald summation

method[4] which is a computationally demanding part of the program. The majority of

the run time of an MD simulation is spent in the calculation of the forces. The inclusion

of the long range forces is necessary for a correct treatment of the system. However

during equilibration of a system the accuracy of the results is much less important than

the time taken to reach equilibrium. In this section we present a method where the

expensive Ewald sums can be temporarily removed in order that a system may rapidly
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approach an approximate equilibrium point. Once equilibrated the Ewald sums would

be added back in to complete the equilibration and then generate accurate trajectories

for analysis.

In order to remove the need for the Ewald summation we require a set of potentials

which approximate the full CF1 potentials. The full CF1 potentials and forces are

shown in Figure 1. It can be seen that there is still a significant potential at the point

at which the potentials are cut-off. In order to be truly effective both potentials and

forces must smoothly and continuously move to zero at the cut-off point. This was

achieved by applying the method of shifted force potentials [18]. Figure 1 also shows

the shifted-force potential curves for the CF1 model of water and compares them to

the original CF1 potentials. The new shifted force potentials and forces can be seen to

go smoothly to zero at the cut-off point of 7 Å.

The difference between the potentials was checked by running simulations using

the original version of the code (full CF1 potentials by Ewald summation) and the

modified version of the code (short ranged shifted force CF1 potentials). The average

energy of a water molecule was found to differ only by 0.5 %. It is important that this

difference be as small as possible to avoid an excessive amount of work when switching

between the full Ewald calculation and the shifted-force calculation. If the energies were

significantly different the simulation would need a considerable time to re-equilibrate to

the new potentials after such a switch occurs. This would negate any benefit obtained

by allowing the system to approach equilibrium rapidly by equilibrating in the shifted-

force system.

Two simulations were performed to compare the effect of shifting potentials on
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the calculated averages. The simulations were well equilibrated in each system by

simulating for at least 5 ps before the production runs were undertaken. The production

runs were 5 ps in duration with a time step of 0.05 fs. The simulations were undertaken

in the standard MD NVE ensemble with averages collected every 2 fs. The average

temperature of each system was close to 300 K being about 311 K in the case of the

shifted force potentials and 310 K in the case of the full potentials.

The averages obtained from each run were similar. Plots of the energy and tem-

perature for each system are shown in Figures 2 and 3. The energy fluctuations in the

shifted-force system are much larger than in the full CF1 potentials. This makes it un-

desirable for using the shifted-force potentials for accumulating production run averages

but has no effect on the usefulness of the system for rapidly approaching equilibrium.

The average energy of the shifted-force potentials is also slightly higher than the CF1

potentials but not to such an extent that prolonged re-equilibration would be required

after shifting back to CF1 potentials. Pair correlation functions were also collected for

both systems as a check that the solution was in equilibrium and also to confirm that

the two models give the same average structure for water. The g(r) were found to be

almost exactly identical and are shown in Figure 4.

Two similar simulations were performed to compare the difference in run-time. Each

simulation was for 0.5 ps with a time step of 0.05 fs. Averages were accumulated every

40 steps (2 fs) and the simulation was done in the NVE ensemble. The calculation with

the shifted force potentials was 2.77 times faster than the full calculations.
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CONCLUSIONS

The shifted force potentials of CF1 water are a viable alternative to the full potentials

especially for the purpose of equilibrating the system. Our results have shown that there

are only minor differences in the averages generated by the two systems allowing easy

switching between the two sets of potentials. The pair correlation functions for each

system confirm that the shifted-force potentials do indeed give the correct structure for

water. Simulation with the shifted-force potentials is 2.77 times faster than with the

full potentials. This encourages the use of the shifted force potentials as a means of

equilibrating the system quicker before the full-potentials are used to generate exact

averages.
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Figure 1: Potential functions for the CF1 model of water. The solid line represents the

full CF1 potentials. The dashed line represents the shifted force potentials.

Figure 2: Results for a 5 ps simulation in the NVE ensemble using the full CF1 po-

tentials. Plots of both temperature and energy per molecule with respect to time are

shown. The simulation involves a time step of 0.05 fs and instantaneous values were

accumulated every 2 fs.

Figure 3: Results for a 5 ps simulation in the NVE ensemble using the shifted force

potentials. All other details are as for Figure 2.

Figure 4: Pair correlation functions (OH, HH and OO from bottom to top) for the full

CF1 potentials and the shifted force potentials (squares). The HH and OO functions

are shifted up by 2 and 4 respectively for clarity.
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